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The Localization Properties of a Random 
Steady Flow on a Lattice 
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We consider a random stationary vector field on a multidimensional lattice and 
investigate flow-connected subsets of the lattice invariant under the action of the 
associated flow. The subsets of primary interest are cycles, and vortices each of 
which is the set of orbits terminating in the same cycle. We prove that with 
probability 1 each vortex only involves a finite number of sites of the lattice. 
Under the assumption of independence of the vector field in different sites, we 
find that with probability 1 the vortices exhaust all possible maximal flow- 
connected invariant subsets of the lattice if and only if the probability of 
existence of a cycle is positive. Thus, if cycles exist, a particle under the action 
of the flow only moves within a bounded region, i.e., it is completely localized. 
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INTRODUCTION 

The dynamics of a particle (classical or quantum) in a random environ- 
ment has been the object of intensive investigations for many years. One of 
the first remarkable results in this field is due to Anderson, (1) who found 
the physical mechanism of the localization of an electron provided by the 
randomness of the environment. The rigorous mathematical formulation of 
Anderson localization in the multidimensional case was given quite recently 
(see ref. 2 and references therein). The idea of localization as a natural 
feature of disordered systems was developed and extended to various types 
of waves (see ref. 3 and references therein). Nevertheless, accurate mathe- 
matical treatment and interpretation of localization for each type of 
random medium is a difficult problem. For  instance, the recent research on 
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random walks in the lattice 7/a in a random environment (see refs. 4 and 
5 and references) has shown that the diffusive character of the random 
walk holds if the rate of randomness in the environment is sufficiently 
small. 

In this paper we consider the motion of a classical particle in a 
random steady flow on the lattice Z a. Our primary interest focuses on the 
localization properties of the flow. Namely, we investigate whether a 
particle under the action of the flow typically moves within a bounded 
region, whether the maximal flow-connected subsets invariant under the 
action of the flow are finite, and how big these subsets are. 

Analyzing the structure of a statistically homogeneous random flow, 
we found that the orbits of the flow and their sets can be classified in a 
simple manner. Namely, there are the following objects of interest: (i) 
cycles, i.e., periodic orbits of the flow; (ii) vortices, each of which is the 
set of orbits terminating in the same cycle (thus, it is a maximal flow- 
connected invariant subset); and (iii) regular maximally extended orbits 
that may start at some site and pass through each site not more than once. 

Theorem 3 states that with probability 1 each vortex only involves a 
finite number of sites of the lattice. Furthermore, if the vector field 
associated with the flow takes on independent values at different sites, the 
classification of the subsets invariant under the action of the flow becomes 
very simple. Namely, the result of Theorem 4 is that with probability 1 
either there are no vortices at all or the set of the sites associated with them 
exhausts the entire lattice. Thus, if cycles exist with positive probability, 
then the lattice can be partitioned into finite regions, each of which is a 
maximal flow-connected invariant set containing exactly one cycle of the 
flow, i.e., a complete localization takes place. In particular, a particle 
moving under the action of such a flow will be eventually trapped in a 
cycle. Finally, in Theorem 6 we obtain statistical estimates of the space 
occupied by a vortex. 

1. S T A T E M E N T  OF RESULTS 

Let ~d be the d-dimensional lattice, and v(x), x~  7/a, be a random 
stationary vector field with values in 2U, i.e., v(x) ~ 7/a. That is, if we denote 
the probabilistic space by (g2, o~, P), there exist a group of automorphisms 
preserving this probabilistic space, Tx, x~  77a [i.e., P { T x ( . ) } = P { . } ,  
x ~  Z a] such that v(x, Ty~ )=  v(x + y, ~o), x, y ~  ~a. The expectation with 
respect to the measure P we will denote by E{. }. 

We will associate with the given field v the following Cauchy problem: 

x ( t + l ) - - x ( t ) = v ( x ( t ) ) ,  x(O)=xo; X(t),Xo G7/d, t e E +  (1.1) 
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where Z+  = {0, 1, 2,...}, and the relevant  r a n d o m  m a p  V: 2 d ~  Z d given by 

V(x)  = x + v(x)  

When t runs overall  na tura l  numbers ,  the solutions X(t, Xo) = V'xo of the 
Cauchy  p rob lem generate orbits  of  the flow associated with the field v. 
Since the mapp ing  V is not  a one- to-one correspondence,  we should specify 
the definition of orbits  of  the flow. In order  to do this, we begin with the 
following obvious  general observat ion.  

P r o p o s i t i o n  1. For  any  m a p  v: 7/dw-~Z d any solution x(t) of the 
Cauchy  p rob lem (1.1) must  be one of the following two types only: 

(i) Non-self-intersecting, i.e., all values x(t), t ~ 7/+ are different. 

(ii) Periodic beginning f rom some finite t ime tl ,  i.e., 3t l ,  T e T / + :  
x(t  + T) = x(t), t >~ tl. 

Definition 1. Orbits ofaf low.  Suppose that  Z = [x,,, xn+ l ..... Xm] is 
an ordered set in 7/d, where n and  m are integers and n ~< m (we allow also 
n = - o o  and m = oo with the corresponding change of denota t ion  for Z). 
We suppose also all of xn, xn + 1 ,...,Xm to be different. We will call )~ an orbit  
of the flow V if the following is true: (a) x~+ 1 = Vxz for any finite integer 
l such that  n<~l<m; (b) if n is finite, then V x r  V x e Z d ;  (c) if m is 
finite, then Vxts  {x , ,  X,+I,...,Xm} [ the  assumpt ions  (b) and (c) suppose 
that  we have extended the orbit  as much  as possible] .  We will distinguish 
the following types of orbits: 

(i) n is finite, m = 0, and Vxo = xn ; we will call such an orbit  of the 
flow a cycle. 

(ii) m = 0 and Vx o = xt, n < l <  0; we will call such an orbit  of  the 
flow an extended cycle. 

(iii) m = oo; we will call such an orbit  of the flow regular. 

Definition 2. Vortex. We can associate with any fixed cycle c the 
set wc of all extended orbits  of the flow that  terminates  by this cycle. Let 
us call such a set a vortex. Thus  the set of orbits of the flow is par t i t ioned 
into the set of regular  orbits  and set of vortices. 

F r o m  Propos i t ion  1 and  Definitions 1 and 2 we easily obta in  the 
following statement.  

Proposition 2. (i) If  two orbits  of a flow contain a c o m m o n  site, 
then their par ts  following this site coincide. 

(ii) Two  different cycles as well as the different vortices do not  
involve any c o m m o n  site. 
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T h e o r e m  3 (Orbits of a flow). With probability 1: 

(i) The number of orbits going through any site x of the lattice and 
involving infinitely many sites before x is finite. 

(ii) Any vortex wc covers a finite domain ~c of the lattice. 

(iii) E{Zc(I~cI/[~I)I~c~A[}<~IAI, where ~ is the set of the sites 
involved in c, and [AI is the number of sites in a subset A of the 
lattice. 

We can enhance the statements if we assume some sort of inde- 
pendence of v(x) at different sites x. 

A s s u m p t i o n  I. Let v(x), x ~ 7/d, be a random stationary vector field 
with values in 7/d, and there exist a positive constant 2 < 1 such that for 
any subset A c 7/d 

P { v ( x ) = - ,  x 6 7 / d / A [ v ( y ) = . . ,  y e A }  ~>2P{v(x)=. ,  x~7/d/A} (1.2) 

A s s u m p t i o n  a .  Suppose ~ is a support of the single distribution 
of v(0), i.e., U = {v e 7]d: P{v(0 )=  v} >0} .  There exist the finite sequence 
Vl ..... vk such that 

V l , . . . , v k ~ ,  vl + .. .  + v k = 0  (1.3) 

Under Assumption I the validity of Assumption C is equivalent to the 
existence of a cycle with a positive probability. 

Now we can formulate the main statement. 

T h e o r e m  4. Suppose that the random field v satisfies Assumption I. 
Then with probability 1 either all solutions of (1.1) are of type (i) from 
Proposition 1 or all of them are of type (ii) from this proposition. 
Furthermore: 

(i) If Assumption C is valid, then with probability 1 any solution of 
(1.1) is bounded and consequently periodic beginning from a 
certain time. 

(ii) If Assumption C is not valid, then with probability 1 for any 
solution x(t) of (1.1) all values x(t), t eT /+ ,  are different, and 
therefore x(t) approaches infinity as t approaches infinity. 

De f in i t i on  3. Let us denote by to(Xo) the minimal value of t such 
that for some tl, X(t, Xo) = X(t l ,  Xo), where 0 ~< t~ < t. 

It turns out that this moment to is finite with probability one. The next 
statement indicates some estimation of the distribution of this random 
moment. 



Random Steady Flow on  a L a t t i c e  1603  

Theorem 5. Under Assumptions I and C there exist such positive 
constant C and # that/~ < 1, and the following inequality holds: 

P{to(Xo)>n}<~Cp ~, n = l ,  2,...; Xo~Z d (1.4) 

Theorem 6 (Vortices). Suppose that the random field v satisfies 
Assumption I. Then, with probability 1 either all orbits of the flow are 
regular or they form vortices only. Besides, if Assumption C is not valid, 
then with probability 1 all orbits of the flow are regular. If, on the contrary, 
Assumption C is valid, i.e., the probability of the existence of a cycle is 
positive, then the set of orbits is exhausted by vortices only, i.e., 
U c We = S ,  where c runs overall cycles. If in addition the field v is bounded 
by some nonrandom constant, then there exist constants 6 and C such that 
0 < 6 < 1 ,  0 <  C <  oe, and 

P{l~cl ~>L d} ~< C~ L (1.5) 

for any positive integer L. 

Thus, under the mentioned conditions, if cycles exist, then complete 
localization occurs. 

2. PROOF OF THE RESULTS FOR A S T A T I O N A R Y  
VECTOR FIELD 

Bearing in mind the obvious properties of a flow listed in Proposi- 
tion 2, let us define the order relation in the lattice Z d associated with the 
flow V. 

D e f i n i t i o n  4. We say that the site x is above y (or y is below x) 
if for some nonnegative integer m, y =  Vm(x). If X is above y and y is 
above x, we say that x and y are equivalent. If x is above y and y is not 
above x, we say that x is strictly above y. We call the site x a peak if there 
are no sites above it. 

We define also for x that is above y the function 

H(x, y)=min{m6Z:m>~O, VmX= y} 

For any positive integer m and y ~ Z  d we denote V my= {X~Za: 
Vmx= y}. 

The introduced order relation possesses the following properties, 
which allow us to distinguish the cycles and vortices from other orbits. 
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L e m m a l .  (i) If c is a cycle and y e ~, then ~ = 
{V'~y,m=O, 1 ..... I~1-1}, and all sites in a cycle are equivalent with 
respect to the order relation. 

(ii) If ml<m2 are nonnegative integers, and for some site x, 
Vm'x = Vm2X, then for some cycle c, vmJx, j = 1, 2, are in the set 
~, and m l - m 2  (mod I~l)- 

Proof. The statement (i) is the straightforward consequence of the 
definitions of a cycle and the order relation. Statement (ii) follows from (i) 
and observation that y = Vmlx is in a cycle, since vm2-m~y = y. | 

Lernma 2. (i) If y is outside any cycle; then for any nonnegative rn 

V-my= {xe Zd: tl(x, y ) = m }  (2.1) 

and all elements of the set v-(m+l)y (if they exist) are strictly above all 
elements of the set V-my; in particular, this means that the sets V-my, 
m--0,  1 ..... are disjoint. 

(ii) If for a cycle c, y e ~, then for any nonnegative integer m 

V - " y = { x ~ 7 / d : H ( x , y ) < , m , H ( x , y ) = m ( m o d [ ~ l ) }  (2.2) 

and, for any nonnegative integers k, l, and ml, m2 (ml < m2) 

V Ek+tl~l]yc V-Ek+(l+l)tel]y (2.3) 

v-mty~ v--mzy=~ if ml Cma(mod Icl) (2.4) 

Proof. To prove (2.1), let us notice that if H ( x , y ) = m ,  then 
Vmx = y, and therefore x ~ V-my. Suppose now that x E V-my. Then from 
the definition of V my and H we have Vmx= y and VmX'Y)= y. If we 
assume H(x, y )Cm,  then from the last equalities and Lemma l(i) we must 
conclude that for some cycle c, y is in g, which contradicts the assumptions 
of (i). Therefore (2.1) is true. The last part of statement (i) follows from 
(2.1). To prove (2.2), suppose first that x satisfies the relations in (2.2). 
Then we have VmX'Y)=y, and since H(x, y)<~m, H(x, y ) = m ( m o d  ]el), 
using Lemma 1(i), we may conclude that V'~x = y. Now let us assume that 
Vmx = y. Then from this and the definition of H it follows that H(x, y) <<. m 
and VmX.Y)=y. From the last equality and Lemmal ( i )  we obtain 
H(x, y ) = m ( m o d  I~b), which completes the proof of (2.2). The relations 
(2.3), (2.4) easily follow from (2.2). | 

To establish the main results, let us introduce the following matrix S 
in 12(Y_ a) associated with the action of operator V in the lattice Za: 

S(x, y )= ~l if y= V(x), x, y~2U 
otherwise 
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If we denote by ey, y ~ E a', the standard basis in 12(E d) and by ~ the 
space of finite linear combinations of the basic vectors, we can associate 
with the matrix S the matrix operator S that acts as follows: 

s r  = E S(y, x) q~(x) = O(v(y)) ,  ~ ~ ~,  y ~ ~ 
x 

or 

Sey = ~ ex (2.5) 
x :  V ( x )  = y 

If we wish to deal with operator S within the Hilbert space /2(7/d), the sum 
in (2.5) should involve only a finite number of summands. We can notice 
here that 

HSeyll 2= IV ly] (2.6) 

where ]l' I] is the norm in 12(Ya). In addition, since we assumed the field v 
to be stationary, we have 

S ( x , y , T ~ ) = S ( x + z , y + z ,  og), x , y ,  z e Z  a (2.7) 

L e m m a  3. (i) The following relation holds: 

E { l l S e y U 2 } = E { ~ l S ( x , y ) 1 2 } = l ,  y e Z  d (2.8) 

and therefore with probability 1, S@ _c 9 .  

(ii) With probability 1, the matrix associated with the mapping V m, 
rn = 1, 2 ..... equals S m, sm~  c 9 ,  and 

E{lPSmeyH 2}=1,  yeT/d, m = l ,  2 .... (2.9) 

Smey = ~,, ex, I ] S " e y l l 2  = ]V-myl (2.10) 
x :  V m ( x )  = y 

Proof. Using the relations (2.5) and (2.7), we have 

E{ IlSeyH 2 } = E  { ~  IS(z, y)l 2} = ~z E{ IS(z, y)l 2 } 

= y~ E{  IS(O, y - z)l 2} = Y~ r {  IS(O, z)l 2 } 
~ z 

= E { I s ( o ,  v(0)) l  2} = E { I }  = 1 
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Thus, the equality (2.8) is true. Therefore, with probability 1, S@ c @. 
Statement (ii) easily follows from (2.6) and (i), which completes the proof 
of the lemma. | 

I . emma  4. Let us denote by v(y) the number of infinite orbits of the 
flow that go through the site y and involve infinitely many sites before y, 
and by cg the set Uc ~, where c runs over the set of cycles associated with 
given flow. Then (i) 

v(y) <<. lim inf []Smey]l 2 (2.11) 
m ~  

and (ii) 

l i r a  

if yq}Cg 

if y e Oc c g ,  xr 

if y e Oc c g ,  x e ~ c  

(2.12) 

Proof. To prove (2.11), let us assume first that v(y)=v is finite. 
Thus, there exist v different orbits of the flow, each of which involves 
infinitely many sites of the lattice. Therefore we can find v different sites 
xl,..., xv above y such that each of them belongs to exactly one of v orbits 
considered. Then, for any m ~> m o = max{H(xj, y), 1 ~ j  <~ v} the set V-my 
should contain not less than v sites. Indeed, if this is not true, we can find 
such a ze  V my and different xi and xt that x i =  Vm'z and x t =  vmIz, 
where mi and ml are nonnegative integers. Supposing, for instance, that 
mi>mt,  we have x i - - V  m' '~xt, which contradicts the assumption that 
each xj belongs to exactly one of the considered orbits. That is, I V-myl >1 v 
for any m>~m o. From this inequality and the equalities (2.10) we obtain 
the desired (2.11). If v(y) is infinite, we should take any finite v and repeat 
literally the previous reasoning. Thus we obtain lim inf(.)~> v, and since v 
is arbitrary, we have lim in f ( . )=  0% which completes the proof of (2.11). 

Considering (2.12), we can notice that, if yr then, as follows from 
Lemma 2(i) and (2.10), (ex, Smey) can be different from zero for one m 
only. From this it easily follows that (2.12) is true. If y Eg, then 
V-mY c- ~c. Therefore, if xr  We, using (2.10), we have (ex, Smey)=0, that 
is, (2.12) is true. Finally, if y s~  and x elbc, we have from (2.10) and 
Lemma2(ii)  that (e~,Smey)=l, when m=H(x ,y ) (mod]6 l )  and zero 
otherwise. From this observation we can easily get (2.12), which completes 
the proof of the lemma. | 

Lernma 5. (i) We have 
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and (ii) for any A _  Z a 

ProoL Statement (i) follows straightforwardly from (2.9), (2.11), and 
Fatou's lemma. In order to prove (2.13), let us use (2.12) in the following 
way. Let us take arbitrary finite subsets A and A~ in 2U, and consider the 
expectation 

E ~ lim 1__ (ex, S%y) z = E  [Oc~A] (2.14) 
I y~A m ~ m k = l  [cl 

On the other hand, using Fatou's lemma and (2.9), we can evaluate the left 
side of (2.14) as follows: 

E {  ~ ~ lim--1 ~ (e~,Skey)2} 
x E A 1  y E A  m ~ ~ 1 7 6  

1 ~ (ex, Skey)2 = y" E i m r  n 
y e a  x 1 ~ k = l  

y e A  mk=l 

Thus from the last inequality and (2.14) we have 

E {~ I~'~n AaI IO n AI } ~ 

Since in this inequality A I is an arbitrary set in the lattice, we may 
conclude that (2.13) is true. | 

Proof of Theorem 3. Statements (i) and (iii) of the theorem follow 
in a straightforward way from Lemma 5(i), (ii), respectively. In order to 
prove statement (ii), let us take an arbitrary sequence of cubes A,, n ~> 1, 
expanding to the whole lattice 7] a when n approaches oo. Then 
from (ii) it follows that with probability 1 for any n 

]rb~] [c c~ A,I < ~  

Since any cycle is covered by some A,, then all ]ffcl are finite, which 
completes the proof of (i) and the theorem, l 
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3. PROOF OF THE RESULTS W H E N  THE VECTORS OF THE 
FLOW ARE INDEPENDENT IN DIFFERENT SITES 

We begin the proof of Theorem4 from statement (ii). Namely, if 
Assumption C is not valid, then using (1.1), we obtain with probability 1 
for a n y t > t l E Z +  

x(t)-X(tl)= i v(x(z))5~0 
Z- - t l  

That is, all x(t), t~ 7/+, are different, which completes the proof of state- 
ment (ii) of Theorem 4. Thus, we will assume below that Assumption C is 
valid. 

We will need some auxiliary assertions. Let us introduce the random 
process X(t, Xo), t ~> 0, defined by Eq. (1.1) and investigate its properties. 

Suppose that Z = Ix1 ..... x , , ]  is an ordered set in Z d, i.e., Z is a vector 
from (7/d)m. Given such an Z, we denote by 2 the set {Xl ..... Xm} corre- 
sponding to this Z. Denote by U the operator of the cyclic permutation of 
any such Z, i.e., UXl=X2, Ux2=x3 ..... UXr,=X~. 

We will also use the following notations: 

Y '=  [Y~,..., Y,] e (Zd) z, I7'= {Yl ..... Y,} 

P{'I  '" } is the conditioned probabilistic measure, where P is the original 
probabilistic measure and the conditions are to the right of the vertical bar. 
We have 

px(YZ)=P{X(t, Xo)= Y,, 1 ~< t~<t} 

p,:(Zml Y')=P{X(I+7, Xo) = z~, 1 <~<~mlX(H, x0)=  YB, 0~<B ~<l} 

Now we will assume below that k from the Assumption C is the mini- 
mal nonnegative integer providing the validity of (1.3). Then, using the 
corresponding vectors v l ..... v~ from (1.3), we can construct the ordered set 

o x ~ such that o 0, x ~ o Zo = Ix1,-.., . . . .  +vk- X l =  ~ ) I , ' " ~ X k  = /)I -~- 1" 

k e m m a  6. Under the Assumptions I and C: 

(i) 
(ii) 

x~ x ~ are different. 

The probability that Zo is a cycle is equal to 

o V ( x ~ 1 7 6  P{ V ( x  ~ = +, ,  (3.1) 

P(V(x~ ~ l < ~ < k - 1 ,  V(x~176176 l~<c~<k} ~ + 1 ~  

Proof. Statement (i) follows in a straightforward way from the 
choice of k as a minimal nonnegative integer providing (1.3). In addition, 
from the construction of Zo we have 
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Then, using Assumption I, we can write that 

P{v(x ~ l~<~<k}  

= P{v(x ~ = Dll v(x~)=v~,2<~<~~ k}P{v(xO)=v~,2<e<<k} 

>>.2P{v(x ~ P{v(x ~ 2~<c~<k} 

[I 
l ~ e ~ < k  

Since the right side of the last inequality is positive (in accordance with the 
definition of v~), we have the desired (3.1). | 

k o m m a  7. The conditioned probabilities Px can be represented as 
follows: 

px(Zml Y') = P{v(z) = U z -  z, z ~ [Yt, zm]\zm Iv(y) = U y -  y, y �9 Y ' \y ,}  

(3.2) 

Proof. This statement follows at once from the definitions of the 
random process X(t, Xo) by Eq.(1.1) and the operator of the cyclic 
permutation U. 1 

Let us denote by ~ ,  neT/+,  such event that all vectors X(t, Xo), 
0 ~ t ~ nk, are different. It is clear that the statements of Theorems 4 and 
5 can be reduced to estimates of the probabilities P{~,}.  It is obvious also 
that 

~ + 1  ~ ,  n e Z +  (3.3) 

I . emma  8. The following inequality holds: 

P{~,+~} ~< qoP{.~,}, qo = 1 -2po  (3.4) 

and consequently 

where Po is the constant defined in (3.1). 

(3.5) 

Proof. To obtain the necessary estimations, let us denote by D n the 
set of such ynk that have different components, i.e., y, r y,  if r r t and 
1 ~ t, z <<. nk. Now we can represent the desired probabilities as follows: 

P { ~ n } =  ~ px (Y  nk) (3.6) 
ynk E D n 

P{~,  +1 } = Z px(ZXl y~k) Px(r"k) 
[ ynk, z k ]  e Dn+ l 

= ~ p x ( Y  "k) ~ p x ( Z k l Y  "~) (3.7) 
ynk ~ Dn zk :  [ ynk, Z k ] ~ Dn + 1 
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Let us est imate the sum of the condi t ioned probabil i t ies in the last 
equali ty assuming that  [Y~k, Z k ] s D , + I  and using the corresponding 
representa t ion f rom L e m m a  7, 

p x ( Z k l  y . k )  
z k  : [ ynk, z k  ] ~ D n + l 

= E 
z~: [ ze"k, zk] e D.+ 1 

= 1 -  

P{v(z)  = U z -  z, z e [Y.k,  Zk]  ^ \ zk  I 

~(y)= U y -  y, y e  i '"k\y.~} 

P{v(z)  = Uz - z ,z  e [ y , k , Z  k] ^ \zk[ 
zk: [- ynk, z k  ] gk On + l 

v(y)= Uy-y,  y~ ~"k\y.k} (3.8) 

N o w  let us find an upper  est imate for the last sum. This est imate 
is based in the observa t ion  that  the considered sum contains a term 
corresponding to the shifted Zo. Since Zo (or any of its shifts) can form the 
cycle with probabi l i ty  at least Po, we will use this fact to get the desired 
estimate.  Namely ,  considering the ment ioned  sum under  the fixed yn~, 
suppose that  Zo k = [z~ z ~ = Ynk + Zo. In part icular,  f rom the construc-  
t ion of Zo we have that  all z ~ are different, and z ~ = Y,k + x~ = Ynk. There-  
fore there exists an integer r such that  1 ~< r ~ k ,  and  z~ z ~  I?,k, 
z ~ = y , e  I? nk. Then  if r is less than k, we form the periodic sequence 

o o o and  construct  the vector  Z~, Ys, Ys+l,...,Ynk, zl , . . . ,zr  1,Zr, Ys, Ys+l, '",  
moderniz ing  the vector  Z~, as follows. We assign to zl  ..... z~ the values of 
the constructed periodic sequence in succession start ing f rom z l = z  ~ 
Under  all these assumptions ,  using Assumpt ion  I and (3.1), we obta in  

P{v(z )= U z -  z, z e [y.~, z ~3 ^ \zkl 
Zk : [ r"k, Zk 3 r D , + l 

v ( y ) =  U y -  y, y ~  f '"kky.k } 

~ P { / ) ( Z )  U z - - z , z @  [ Y n k ,  Z k l ]  A 1 = \zk Iv(y)  = Uy - y, y e f . . k \ y .~}  

= P{v(z'~) = v=, 1 ~< c~ ~< r - 1 Iv(y)  = Uy - y, y e Y"k \y , k  } >~ 2/)o 

F r o m  the last inequality, the inequali ty (3.8), and the identities (3.6) 
and (3.7), we obtain  successively (3.3) and (3.4). | 

Proo f  o[ Theorems  4 a n d  5. Let us assume that  for a given realiza- 
t ion of the r a n d o m  vector  field v and some initial value x0 the solution of 
(1.1) is unbounded .  In accordance  with Propos i t ion  1, this means  that  the 
corresponding realization of the r a n d o m  process X(t,  Xo) belongs to the set 
~ =  0,~>1 ~ , .  But this can happen  with probabi l i ty  zero only, since f rom 
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inequality (3.5) it follows that P{~}  = 0. Hence with probability one each 
solution of the system (1.1) is bounded. Moreover, the inequality (1.4) is 
direct consequence of the inequality (3.5), where ~t = ()~po) l/k, and constants 
Po and k were defined in the proof of Lemma 8. It is clear from the defini- 
tions of to(Xo) and sets Nn. The last remark completes the proof of the 
Theorems 4 and 5. II 

Beginning the proof of Theorem 6, we can notice that all statement of 
this theorem, except inequality (1.5), are straightforward consequences of 
Theorems 3 and 4. That is, to complete the proof of Theorem 6, we will 
suppose that Assumptions I and C are valid, and there exists a positive p 
such that ]v(X)lo<.p, x e 2  d, where for Y = [ Y l  ..... Yd] ~ d ;  ] Y [ 0  = 

maxl.<j~<d{ [yj[ }. 
Let AR = {x E y_d: Ixlo ~ R}, where R is a positive integer. In 

accordance with Theorem 4, we can associate with each site x the cycle cx, 
by which the solution X(t, x) terminates. Fixing R, let us consider the 
vortex Wco. From Definition 2 and Proposition 2 we have the following 
representation: 

~'c0 = {x e Y :  cx = Co } (3.9) 

Now let us introduce the events 

dR = {a) E s go(e)) --c AR }, gx, R = {co e (2: cx(co) --~ x + Atxi0 R} 

where xe77 a, ]X[o>2R. Since for [Xto>2R, ARC~(x+Al~lo R)----~, we 
can easily obtain, using (3.9), the following result: 

{l'~x~ A2R} ~ dR t~ (Ixlo~> 2R gx.R) (3.10) 

Denoting by d C the complementary event to d ,  we have the following 
result. 

Lamina  9. (i) de--- {to(O)<R/p}, and 

P { d ~ }  ~ C, ~R/P (3.11) 

(ii) Sx, R ~ _ {to(Xo)<([Xlo-R)/p},  and 

P{g~,.R)} ~< Cl ~ (]xIO-R)/p (3.12) 

where C1, C2 are positive constants, and # is the constant from (1.4). 
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Proof.  The inclusions (i) and (ii) are s t ra ightforward consequences of 
Definit ion 3 of the function to(X) and the definitions of the relevant  sets. 
The  inequalities (3.11) and (3.12) follow from the inequali ty (1.4) and  the 
inclusions (i) and (ii). Finally, (3.13) follows from (3.11) and  (3.12), which 
completes  the p roof  of the lemma.  III 

Proo f  o f  Inequal i ty  (1.5) .  F r o m  (3.10) and (3.13) we have for any 
positive R 

P { f f c 0 -  AzR} ~> 1 -- C6 R (3.14) 

where C and 6 are positive constants,  and 6 can be arbi t rary  but  is greater  
than/~1/,. The desired (1.5) obviously follows f rom (3.14), which completes  
the p roof  of  T h e o r e m  6. | 
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